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Abstract. A method of calculating the longitudinal magnetoresistance of ultrathin films or 
inversion layers in MOS structures with sufficient size quantisation of transverse electron 
motion is proposed within the framework of the theory of weak localisation. The cases when 
a single subband and several subbands of size quantisation are filled are discussed. It is shown 
that in all studied cases the magnetoresistance is negative and depends on the ratio H2/T, so 
that it can be distinguished experimentally from the HIT-dependences of electron-electron 
interaction corrections to conductivity. Extension of the obtained results to the mag- 
netoresistance calculation of quasi-iD channel is also discussed. 

1. Introduction 

The phenomenon of weak localisation of electrons in disordered conductors determines 
many features of their low-temperature kinetic properties. For instance, the anomalous 
magnetic field and temperature dependences of resistivity of dirty metals arise from 
sensitivity of interference corrections to conductivity to breaking of the time-reversal 
symmetry. In the theory [l, 21 the origin of these corrections (usually called quantum 
corrections) to conductivity is explained as a result of interference between two self- 
intersecting diffusive paths differing only in the direction of traversing the closed loop. 
The external magnetic field applied to the sample destroys the phase coherence between 
these two paths and suppresses the quantum correction to conductivity, thus giving rise 
to a negative magnetoresistance. 

In the films which are thick enough to consider the electron motion across the layer 
as classical, the lines of reasoning in the analysisof the magnetoresistance in two different 
geometries, i.e. with the magnetic field parallel and perpendicular to the film, are 
qualitatively similar. Then all estimations can be made by calculating additional phases 
acquired by an electron in the magnetic field [3-51. In this paper we address the opposite 
limit of ultrathin films and study the weak localisation in systems with quantised motion 
in one direction (the z axis). Both the case of a film with a single subband filled and the 
intermediate case, when many subbands are filled in a quantum well, are analysed in the 
first two sections, and the relevant methods of calculating the longitudinal mag- 
netoresistance in these systems are proposed. 

2. A film with only the lowest subband filled 

In ultrathin films and inversion layers with a quantised transverse motion of carriers the 
suppression of weak localisation by a parallel magnetic field arises because of some 

0953-8984/90/163797 + 06 $03.50 0 1990 IOP Publishing Ltd 3797 



3798 V I  Fal’ko 

features that the latter brings to 2D scattering [6] .  The point is that inmany experimentally 
investigated quasi-2~ systems the localised scatterers, which cause the momentum relax- 
ation, are located asymmetrically with respect to the middle of a quantum well. In 
inversion layers in MOS devices the role of such scatterers is played by irregularities of 
the semiconductor surface, and in films by impurities randomly distributed along the 
width of a sample. 

If the magnetic field is oriented in the plane of a film, it couples the transverse motion 
and longitudinal motion of electrons, and the transverse part q f ) ( z )  of the full free- 
carrier wavefunction 

V r ) ( z ,  r )  = exp(ip r) q f ) ( z )  (1) 
acquires a dependence on its longitudinal momentum. The Born amplitude of electron 
scattering on the asymmetrically located defects is determined by the matrix elements 
of the three-dimensional scatterer potential u(x, y ,  z )  between wavefunctions (l), and 
therefore must have this dependence. To describe the character of the effect, it is 
convenient to assume the scatterer potential to have a separable form u(x, y ,  z )  = 
u(x, y)f(z), where a dimensionless functionf(z) - 1 is connected with an asymmetry of 
scattering potential in the z direction. Thus the magnetic field leads to the Born amplitude 

g p , p ,  = g [ ; ) - p d 1  + HP + P’) * (H x 1211 (2) 
where 

containing the term linear in H and the total momentump + p ’ ,  wherep andp’ are the 
electron momenta before and after the collision respectively and 1, is a unit vector in the 
z direction. Phenomenologically, this special term in (2) results from the simultaneous 
breaking of two symmetries in the system, i.e. from the breaking of the time-reversal 
symmetry caused by the magnetic field and the inversion symmetry breaking due to 
asymmetrical location of a scatterer. In further considerations the parameter 5 used to 
define the degree of asymmetry of a scatterer can be treated as phenomenological, and 
its value for MOS structures can be extracted from the magnitude of the photomagnetic 
effect [6]. 

On the other hand, the special form of the amplitude (2) is the consequence of the 
initial 3d character of electron motion but, all in all, these carriers could be regarded as 
almost 2~ particles. Therefore in the qualitative analysis of efficiency of weak localisation 
we shall follow the usual method used in calculations of quantum corrections to con- 
ductivity [l] in its two-dimensional version. This consists in estimating the portion of 
closed paths 

That can contribute effectively to the interference enhancement of the probability of 
return among all possible diffusive paths. The exponential factor in ( 3 )  accounts for 
inelastic processes which destroy the phase coherence between pairs of time-reversed 
trajectories. 

In the estimation ( 3 )  the condition of equality of the realisation probabilities w1,2 of 
two self-intersecting diffusive paths traversed in opposite directions is used. In the case 
in point this condition is not satisfied. Two probabilities mentioned above are determined 
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by the product of scattering amplitudes in each inflection of a diffusive path. Because of 
the special form of the Born amplitude (2), the parallel magnetic field gives rise to a 
number of additional multipliers 1 ? + p') (H X 1,) in w1,2 with random values of 
the sump + p ' .  Thus the averaged total probability of passing a closed loop in opposite 
directions undergoes exponential suppression: 

- exp( -2g2p$H't/z) w(0)  (4) 
when the number t/z of elastic collisions, which the particle suffers until it returns to the 
point of departure, is large enough. In equation (4), z denotes the mean free path time 
in the system in the absence of a magnetic field. 

Now we see that field-induced relaxation arises, and the relaxation rate 

t;' = 2g2pgH2z-' - (Hd2/@o)2(pFd/h)22-' pFd ( 5 )  
must be added to the inelastic phase relaxation rate zp,' in (3). In (9, d is the efficient 
thickness of electron layer. A simple calculation of the integral (3) shows that the 
magnetoresistance 

Au2 = 6oz(H) - 6az(0) = (e2/h) ln(1 + tq, /tH) (6) 
in the system under investigation is negative and obeys the quadratic and logarithmic 
laws in weak and strong magnetic fields respectively. The dependences of the relaxation 
rate ( 5 )  on the magnetic field and the parameters of the ZD electron gas have already 
been clarified in the text. The numerical coefficient in ( 5 )  is a result of more rigorous 
calculation expounded in the appendix. 

3. A film with a few subbands filled 

In thin films with a few subbands filled, the terms linear in H and p + p' also arise in all 
amplitudes of intersubband scattering. Thus the phase relaxation rate zH1 must have an 
additional factorpFd/h in comparison with that calculated above. To obtain this result, 
one can follow the method described in the appendix. Nevertheless, in the present paper 
we prefer another line of reasoning based on the quasiclassical treatment of the problem, 
because it permits us to separate the regions of film parameters, where the size quanti- 
sation is sufficient and where it is not. 

Consider electron motion in a rather pure metal or a semiconductor layer of width d 
somewhat less than the mean free path I. The 3D quasiclassical trajectory of a particle in 
such a film has the form of a series of ballistic tracks from one surface to the other with 
specular boundary reflection and an inclination angle aunchanged between two impurity 
collisions. Since all closed paths involving only wall collisions enclose zero flux, only 
rare events of impurity scattering are responsible for the additional phase that an electron 
acquires in a magnetic field. As a result, the suppression of the phase correlations 

eHd2 
K(t) = (exp{iq(t)}) = exp (7)  

WO 

occurs when t > zH , The dephasing time tH is determined by the mean square value of 
the characteristic shaded areas in figure 1 and can be expressed in terms of a minimal 
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Figure 1. The characteristic form of an electron trajectory in a thin film of pure metal. The 
shaded areas are responsible for additional phase acquired by an electron in the magnetic 
field. 

inclination angle a. of the ballistic electron path across the layer. As this angle a. - 
h/pFd is determined by the ratio of the transverse momentum in the lowest occupied 
subband to the Fermi momentumpf, the phase relaxation rate can be written as 

and depends on the elastic scattering time z. If the angle a. is limited by impurity 
collisions, it equals the ratio d/l and the corresponding magnetic field phase relaxation 
rate [4] 

zH1 = (Hd2/@o)2vF/d (9) 
depends only on the width d of a sample and the Fermi velocity uF, but not on the 
momentum relaxation rate. 

The crossover between two asymptotical regimes (8) and (9) takes place when the 
angles a. defined by the two conditions mentioned above are equal. It is convenient to 
follow this crossover in figure 2, where all main regions of film parameters and the 
respective forms of the phase relaxation rate in the magnetic field are shown. Thus the 
purely classical description (9) is suitable for films of width 

d>m (10) 
which is parametrically larger than the Fermi wavelength of electrons. To evaluate the 
longitudinal magnetoresistance of somewhat thinner films, one ought to substitute zH 
from (8) into the general expression ( 5 ) .  The applicability of the latter estimation extends 
up to films with d - A F ,  when the extracted multiplyerpFd/h in (8) must be replaced by 
unity. A further decrease in the sample thickness leads to an additional small prefactor 
(PFd/h)’ in the dephasing rate (Hd2@o)2(pFd/h)2z-1, and one returns to the case 
described by (6). 

The relaxation time tH in the opposite case of films with diffusive electron motion 
across a sample corresponds to that shown on the right-hand side of figure 2. The 
parameterp,l/h, which permits us to separate the regimes (8) and (9), is suggested to 
be large, as is always done when considering weak localisation. 

Figure 2. Different regions of film parameters and the relevant forms of the phase relaxation 
rate. 
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4. Conclusions 

In all asymptotical regimes studied in this paper the field and temperature dependences 
of the magnetoresistance are described by the function of the single combination zp( T ) /  
t H ( H ) .  In thin metallic films and inversion layers in MOS structures at low temperatures, 
ti1 - T1+6, 6 Q 1 [7]; thus Aa2(H, T )  =e Ao2(PH2/T).  The dependences of this kind 
have already been observed in p-MOS devices [8].  It is necessary to note that these 
dependences are characteristic of the proposed mechanism of the magnetoresistance, 
because expressions for electron-electron interaction corrections and spin-orbital cor- 
rections contain magnetic field and temperature in the form p H / T  [2 ,9] .  As to the sign 
of the effect, the calculated magnetoresistance is negative in contrast to field-induced 
resistance changes in electron-electron interaction corrections. Thus the interaction 
mechanism of the magnetoresistance predominates at lower temperatures, while the 
weak-localisation corrections correspond to T k p2/P (with /3 taken from (6), ( 8 )  or 

Finally, it is useful to note that the proposed method of evaluation of the phase 
relaxation times tH can be applied to studies of the magnetoresistance of quantum wires 
in the usual geometry. A s  zE1 is represented by (€9, 

and the crossover (10) between quantum and classical description of electron transverse 
motion remains valid. 

(9)). 

A a l ( H )  = 2(e2/h)(Dz,)1 '2[(1 - zpl / t H ) - l i 2  - 11 (11) 
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Appendix 

To calculate the quantum correction to conductivity more accurately we shall use its 
expression 

60 = - dQ C(Q, SZ = 0) h D  e2 I 
in terms of two-particle Green functions (cooperons) [l]  C(Q, SZ,p ,p ' ) ,  which denote 
the sum of the diagrams shown in figure Al.  According to the particular notation of the 
diagrammatic technique, the crosses in these graphs symbolise electron interactions 
with impurities and correspond to respective scattering amplitudes in the Born approxi- 
mation. In the present calculation the renormalisation of Born amplitudes by the mag- 
netic field 

takes into account not only linear terms (as in ( 2 ) )  but also corrections quadratic in H. 
This renormalisation is sumultaneously incorporated into the momentum dependence 
of the momentum relaxation rate 

(A3) 
and therefore is included in the single-particle Green functions GR(*) = [ E  - E ( p )  k 
iz- '(p)/2]- '  (which are depicted by the full lines in figure Al).  

~- ' (p)  = ~ - ' { l  + 2g(p 1H) + (E2 + 2q)[(P * l H ) 2  + H2pg/2]}  
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Figure A l .  The perturbation theory series used to calculate the cooperon. 

The summation of the perturbation theory series in figure A1 can be reduced [l] to 
solution of a diffusion-like equation for the cooperon so that, in the absence of the 
longitudinal field, C = (-in + DQ2 + r;’)-’. The magnetic field introduces a more 
complicated dependence of C on the initial momentum p and final momentum p ’ .  
However, until the field is weak, we may expand C into power series in p x lH and 
p x lH, and the cooperon acquires the form 

C = [ I +  (2r1 - E 2  ) ( Z I P  X 1, I + I P ‘  X 1~ I 2>1Ci(Q) (A41 

rG1 = 2E2p$H2/r. (A51 

where C1 satisfies a diffusion-like equation with an additional relaxation term 

As all main corrections of the first and the second order in Hare accounted for in (A4), 
and the phase relaxation rate (A5) arises solely from the linear term in (A2), the present 
calculation is adequate for the qualitative discussion in the text. 

In addition, it isuseful to note that the specialcharacter of scattering in our calculation 
does not change the form of the particle-hole Green function (diffusion), which accords 
with the result of the analysis [6] of the kinetic equation with the collision integral 
containing (A2). 
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